On central Fubini-like numbers and polynomials
نویسندگان
چکیده
We introduce the central Fubini-like numbers and polynomials using Rota approach. Several identities properties are established as generating functions, recurrences, explicit formulas, parity, asymptotics determinantal representation.
منابع مشابه
Investigating Fubini and Bell Polynomials with Euler-Seidel Algorithm
This work is based on EulerSeidel matrices ([8]) which is related to algorithms, combinatorics and generating functions. This method is quite useful to investigate properties of some special numbers and polynomials. In this work we use this method to find out some interesting results of Fubini and Bell polynomials and numbers. Although some results are known in this paper, this method provides ...
متن کاملOn Genocchi Numbers and Polynomials
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, C, and Cp will, respectively, denote the ring of p-adic rational integers, the field of p-adic rationalnumbers, the complex number field, and the completion of the algebraic closure of Qp. Let vp be the normalized exponential valuation of Cp with |p|p p−vp p 1/p. When one talks about q-extension, q is variously considered as an i...
متن کاملMotzkin Numbers, Central Trinomial Coefficients and Hybrid Polynomials
We show that the formalism of hybrid polynomials, interpolating between Hermite and Laguerre polynomials, is very useful in the study of Motzkin numbers and central trinomial coefficients. These sequences are identified as special values of hybrid polynomials, a fact which we use to derive their generalized forms and new identities satisfied by them.
متن کاملOn degenerate numbers and polynomials related to the Stirling numbers and the Bell polynomials
In this paper, we consider the degenerate numbers Rn(λ) and polynomials Rn(x, λ) related to the Stirling numbers and the Bell polynomials. We also obtain some explicit formulas for degenerate numbers Rn(λ) and polynomials Rn(x, λ). AMS subject classification: 11B68, 11S40, 11S80.
متن کاملNote on the Euler Numbers and Polynomials
In this paper we investigate the properties of the Euler functions. By using the Fourier transform for the Euler function, we derive the interesting formula related to the infinite series. Finally we give some interesting identities between the Euler numbers and the second kind stirling numbers. §
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Miskolc Mathematical Notes
سال: 2021
ISSN: ['1586-8850', '1787-2405', '1787-2413']
DOI: https://doi.org/10.18514/mmn.2021.2809